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Structure Functions at Low Q  :2

Target Mass Corrections



quark-hadron (Bloom-Gilman) duality          

Intriguing phenomena have been observed in low Q
structure functions

2

anomalous approach of structure functions (e.g. R ratio) 
to real photon limit

surprisingly small higher twist effects in (low) 
moments of structure functions

Identification of correct low Q   dynamics requires 
careful treatment of  “trivial”  kinematical corrections

2

target mass corrections

related to behavior of structure functions in large-x limit

focus mainly on e scattering;  results carry over to     caseν



As W decreases,  DIS region gives way to region 
dominated by nucleon resonances

“DIS”

resonance
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Resonance-DIS transition

x =
Q2

W 2
− M2 + Q2

W 2 = (pN + q)2

= M2
+ 2Mν − Q2

hadronic final state mass



Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

“Bloom-Gilman duality”

2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

≈

Jefferson Lab (Hall C)

Resonance-DIS transition



Georgi, Politzer (1976) 

∫
d
4
x e

iq·x〈N |T (Jµ(x)Jν(0))|N〉

=

∑

k

(
−gµνqµ1qµ2 + gµµ1qνqµ2 + qµqµ1gνµ2 + gµµ1gνµ2Q2

)

×qµ3
· · · qµ2k

22k

Q4k
A2kΠµ1···µ2k}
〈N |Oµ1···µ2k

|N〉

traceless, symmetric
rank-2k tensor

=
k∑

j=0

(−1)j (2k − j)!

2j(2k)j
g · · · g p · · · p

Πµ1···µ2k
= pµ1

· · · pµ2k
− (gµiµj

terms)

Duality in QCD

Operator product expansion

local operators



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD

τ

matrix elements of operators with 
specific “twist”

τ = dimension − spin



(a) (b) (c)

τ = 2

single quark
scattering

τ > 2

qq and qg
correlations

higher twistleading twist
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Operator product expansion

expand moments of structure functions
in powers of 1/Q2

If moment      independent of Q≈
2

higher twist terms            smallA
(τ>2)
n

Duality in QCD
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dx xn−2 F2(x, Q2)
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de Rujula, Georgi, Politzer,
Ann. Phys. 103 (1975) 315

Duality ⇐⇒ suppression of higher twists

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD



Duality in QCD

Considerable data exists in resonance region,  W < 2 GeV

common wisdom:  pQCD analysis not valid in resonance region

in fact:  partonic interpretation of moments  does  include
resonance region

Resonances are an integral part of deep inelastic
structure functions!

implicit role of quark-hadron duality



Proton      momentsF2

F
p

2
At                     ,  ~ 70%  of lowest moment of      Q2

= 1 GeV
2

comes from W < 2 GeV

relative contribution
of resonance region
to n-th moment n



Ji, Unrau, 
Phys. Rev. D 52 (1995) 72

BUT resonances and DIS continuum conspire to
produce only  ~ 10%  higher twist contribution!

Proton      momentsF2

2 2

total
- leading twist



Nachtmann moments

Nachtmann (1973) constructed moments in which only
operators with spin n contribute to the n-2 moment of
structure function

Formulation in terms of usual (“Cornwall-Norton”) moments 
mixes operators of same twist,  but different spin, n

irrelevant at large      , but important 
Q2/ν2

= 4M2x2/Q2

Q2

at intermediate

“target mass corrections” associated with 
higher spin operators (trace terms in OPE)

automatically accounts for kinematical
finite            effectsM2/Q2



Parton kinematics

Nachtmann
scaling variable

p+q
q

p

P

→ x as Q2
→ ∞

mq = 0

pT = 0
(p + q)2 = m

2

q {

ξ =
p+

P+
=

p0 + pz

M

light-cone fraction of target’s momentum carried by parton

ξ =
2x

1 + r
, r =

√
1 + 4M2x2/Q2



Relate Nachtmann and CN moments

n-th Nachtmann moment of      structure functionF2

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

n-th moment of PDFs at finite Q2

µn

2 (Q2) = Mn

2 (Q2) −
n(n − 1)

n + 2

M2

Q2
Mn+2

2 (Q2)

+
n(n2

− 1)

2(n + 3)

M4

Q4
Mn+4

2 (Q2) −
n(n2

− 1)

6

M6

Q6
Mn+6

2 (Q2) + · · ·

mixing between lower & higher CN moments



=
∞∑

j=0

(
M2

Q2

)j
(n + j)!

j!(n − 2)!

An+2j

(n + 2j)(n + 2j − 1)

n-th Cornwall-Norton moment of       
structure function

F2

∫
dx xn−2 F2(x, Q2)Mn

2 (Q2) =

An =

∫ 1

0

dy yn F (y)

“quark distribution function”

F (y) ≡
F2(y)

y2



take inverse Mellin transform (+ tedious manipulations)

r =
√

1 + 4x2M2/Q2ξ =
2x

1 + r

... similarly for other structure functions F1, FL

FGP
2 (x, Q2) =

x2

r3
F (ξ) + 6

M2

Q2

x3

r4

∫ 1

ξ

dξ′ F (ξ′)

+ 12
M4

Q4

x4

r5

∫ 1

ξ

dξ′
∫ 1

ξ′

dξ′′ F (ξ′′)

target mass corrected structure function



no TMCTMC

numerically...

TMCs significant at large          , especially for x2/Q2
FL

JLab Hall C



no TMCTMC

numerically...

TMCs significant at large          , especially for x2/Q2
FL

JLab Hall C

non-zero at x=1 !



Threshold problem

if                          at largeF (y) ∼ (1 − y)β y

then since ξ0 ≡ ξ(x = 1) < 1

F (ξ0) > 0

FTMC
i (x = 1, Q2) > 0

is this physical?

problem with GP formulation?



Possible solutions

Johnson/Tung - modified threshold factor

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

n → ∞, Q2
fixed

µn

2 (Q2) → ξn

0 (Q2) µ̃n

2 (Q2)

“regularized” amplitudes
(threshold-independent)

n fixed, Q2
→ ∞

µn
2 (Q2) → (lnQ2/Λ2)−λn An

An =

∫ 1

0

dξ ξn F (ξ)



Possible solutions

Johnson/Tung - modified threshold factor

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

Bitar, Johnson, Tung
PLB 83B (1979) 114

ansatz µn
2 (Q2) = ξn

0 (Q2) (lnQ2/Λ2)−λn An

consistent with asymptotic pQCD behavior

not unique!



Possible solutions

Johnson/Tung - modified threshold factor

cf. exact expression

moreover, if identify      with An

µn

2 (Q2) = ξn

0 (Q2) Mn

2 (Q2)

Mn

2 (Q2) = µn

2 (Q2) +
nM2

Q2
Mn

2 + · · ·

Mn

2 (Q2) = µn

2 (Q2) +
n(n − 1)

n + 2

M2

Q2
Mn+2

2 + · · ·

inconsistency at low      ?    Q2

M
n

2 =

∫ 1

0

dx x
n−2

F2(x)



Possible solutions

Kulagin, Petti, NPA765 (2006) 126

Kulagin/Petti - expand expressions in 1/Q  2

has correct threshold behavior

Possible solutions

Kulagin/Petti - expand expressions in 

Kulagin, Petti

hep-ph/0412425

1/Q  2

that the target mass corrected inelastic structure functions FTMC
2 remain finite as x → 1

even if the LT terms vanish in this limit. Clearly, the region x close to 1 is beyond the appli-
cability of Eqs.(23). However, in the applications to nuclear structure functions at large x it
is important to meet the threshold condition. One possible way to deal with this problem is
to expand Eqs.(23) in power series in Q−2 and keep a finite number of terms. In particular,
keeping the LT and the 1/Q2 term we have

FTMC
T (x, Q2) = F LT

T (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

T (x, Q2)

)
, (24a)

FTMC
2 (x, Q2) =

(
1 − 4x2M2

Q2

)
F LT

2 (x, Q2) +

x3M2

Q2

(
6

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

2 (x, Q2)

)
, (24b)

xFTMC
3 (x, Q2) =

(
1 − 2x2M2

Q2

)
xF LT

3 (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
zF LT

3 (z, Q2) − ∂

∂x
xF LT

3 (x, Q2)

)
. (24c)

In this approximation the structure functions have a correct threshould behavior and vanish
in the limit of x → 1, provided that the LT terms and their derivatives vanish in this limit.

The target mass corrections should also be applied to the HT terms in the higher order
terms in the twist expansion (20). For this reason we do not consider 1/Q4 terms in the
TMC formula, which are small in the considered kinematical range. We also note, that the
target mass corrections for an off-shell target, i.e. when p2 #= M2, should be treated as part
of the nuclear effects and will be discussed in Sect. IVA6.

B. Structure function phenomenology

The twist expansion and PDFs as universal, process-independent characteristics of the
target are at the basis of extensive QCD phenomenology of high-energy processes. In phe-
nomenological studies, the PDFs are extracted from QCD global fits. A number of such
analyses are available [39, 40, 41]. In our studies of nuclear data described in Sect. VF
to VID we use the results by Alekhin [39] 2 who provides the set of the nucleon PDFs
obtained with coefficient and splitting functions calculated to the NNLO approximation.
Furthetmore, the HT terms and the PDF uncertainties have also been evaluated in [39].

It should be also remarked that the twist expansion and perturbative QCD apparently
breaks down at low Q2. Furthermore, the conservation of electromagnetic current requires
the structure function F2 to vanish as Q2 for Q2 → 0. The data seem to indicate the
presence of a transition region between perturbative and non-perturbative regimes at Q2

about 1 GeV2. In our studies of nuclear effects in the structure functions some data points

2 In our analysis we use PDFs obtained from new fits optimized in the low Q2 region and including additional

data with respect to [39]. This extraction of PDFs also takes into account the nuclear corrections to D

data described in the present paper (Section VG). Results from the new fits will be reported elsewhere.
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has correct threshold behavior

more limited range of applicability (not too low Q  ) ?2



work with     dependent PDFs

Steffens, WM
PRC 73 (2006) 055202

ξ0

n-th moment       of distribution function An

An =

∫ ξmax

0

dξ ξn F (ξ)

what is        ?ξmax

GP use                                unphysicalξmax = 1, ξ0 < ξ < 1

strictly, should use                               ξmax = ξ0

Alternative solution



what is effect on phenomenology?

try several  “toy distributions”

q(ξ) = N ξ−1/2 (1 − ξ)3 , ξmax = 1

standard TMC (“sTMC”)

modified TMC (“mTMC”)

q(ξ) = N ξ−1/2 (1 − ξ)3 Θ(ξ − ξ0), ξmax = ξ0

threshold dependent (“TD”)

qTD(ξ) = N ξ−1/2 (ξ0 − ξ)3 , ξmax = ξ0

Alternative solution
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FIG. 3: The x dependence of the F2 structure function at Q2 = 1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs
on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
(prescription C, solid).

the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

correct threshold behavior for  “TD” correction

non-zero
at x = 1
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value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

effect small at higher Q2



5

from 0 to 1 (specifically, in the integrals for An, H(ξ) and G(ξ)). Here the normalization N ensures that the
distribution integrates to unity. We denote this prescription the “standard TMC” (sTMC).

(B) Integrate a modified distribution which vanishes for ξ > ξ0, as implied by Eq. (7)1:

q(ξ) = N ξ−1/2(1 − ξ)3 Θ(ξ − ξ0) . (19)

We denote this prescription the “modified TMC” (mTMC).
(C) Use a “threshold dependent” (TD) quark distribution which vanishes in the physical limit:

qTD(ξ) = N ξ−1/2(ξ0 − ξ)3 . (20)

0 1 2 3 4

0.8

0.9

1

1.1

µ
2

n
 /

 A
n

Q
2 2

(GeV  )

sTMC

TD

mTMC

n=2

FIG. 1: Ratio of the n = 2 Nachtmann moment of the F2 structure function and the n = 2 moment of the quark distribution,
as a function of Q2. The curves correspond to prescriptions A [“sTMC”] (dotted), B [“mTMC”] (dashed) and C [“TD”] (solid).

Note that because of the upper limit in Eq. (7), An itself will be M2/Q2 dependent for prescriptions B and C. The
results for the ratio µn

2/An of the n = 2 moments are displayed in Fig. 1 for the three cases, with prescriptions A, B
and C corresponding to the dotted, dashed and solid curves, respectively. Comparing the sTMC and mTMC results,
one can see a reduced Q2 dependence when the integrals are restricted to ξ < ξ0. However, a much more dramatic
change occurs when the quark distribution is constrained to vanish at ξ0. This renders the Nachtmann moment almost
equal to the moment of the quark distribution for virtually all Q2 considered. Certainly for Q2 > 1 GeV2 there is no
visible deviation of the ratio from unity. Even for very small Q2, Q2 ∼ 0.3 GeV2, the ratio differs from unity by only
∼ 0.7% (of course the OPE itself may not be valid at such low values of Q2).

Similarly, the ratios for the n = 4 and n = 6 moments are shown in Fig. 2. The deviation of the ratio from unity
for the sTMC approach is between 10%− 20% for Q2 <

∼ 1 GeV2, while that for the modified TMC with prescription
B is of the order of 5% over the same Q2 region. On the other hand, for the threshold dependent prescription C, the
deviation from unity remains around 1% even at these low Q2 values.

A consequence of prescription C is that the moments of the parton distribution are Q2 dependent. This seems to
be an inevitable consequence if the Nachtmann moments of the structure function are to be equal to the moments of
the parton distribution for all Q2. Note that this Q2 dependence is not of higher twist or perturbative QCD origin,
but arises solely from kinematics. Nevertheless, this avoids the more serious problems which arise within the sTMC

1 We believe this was also the implication of De Rújula et al. [11]

Nachtmann     momentsF2

moment of structure function agrees with 
moment of PDF to 1% down to very low Q2
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FIG. 2: Ratios of the n = 4 (upper graph) and n = 6 (lower graph) Nachtmann moment of the F2 structure function and the
corresponding moments of the quark distribution, as a function of Q2. The curves are as in Fig. 1.

approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:
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for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,
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distribution (solid) prescriptions. Note that the scaling longitudinal distribution is zero.

structure functions at finite Q2, and produces vanishing structure functions as x → 1. This is true for both the F2

and FL structure functions.
The Nachtmann moments µn

2 of the F2 structure function, calculated with the threshold dependent distributions
qTD, agree with the moments An of qTD to within 1% for the n = 2, 4 and 6 moments for Q2 as low as 1 GeV2 and
even lower. In contrast, the deviation for the standard or modified TMC procedure (sTMC or mTMC prescriptions)
is more than an order of magnitude larger at the same Q2 values, and grows rapidly with increasing n. Furthermore,
for Q2 > M2 one can show analytically that, at least to O(1/Q6), the moments µn

2 and An are identical. Similarly,
for the longitudinal structure function FL, the Nachtmann moments µn

L with the threshold dependent distribution
are considerably smaller (i.e. closer to the asymptotic value of zero) than the moments in the sTMC or mTMC
prescriptions.

A consequence of our formulation is that the moments of the threshold dependent distributions will in general be
M2/Q2 dependent. This dependence is not associated with either perturbative QCD effects or higher twists, but
comes entirely from the leading twist, target mass effects. Our analysis suggests that it may be necessary to reassess
the interpretation of a parton distribution in the presence of the finite M2/Q2, or ξ, corrections, as well as the
implementation of the qTD distributions in the Q2 evolution equations. We will address these problems in future work
[15]. At the same time, our numerical results give impetus to investigating the impact of TMCs on phenomenological
fits to structure functions at low Q2 [16] and the extraction of twist-two parton distributions.
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IV. CONCLUSION

In this work we have revisited the long-standing problem of target mass corrections to nucleon structure functions.
The standard procedure for implementing target mass effects suffers from the well known threshold problem, in
which the corrected, leading twist structure function does not vanish at x = 1. We have proposed a solution to this
problem by introducing a finite-Q2, “threshold dependent” parton distribution function that explicitly depends on the
kinematical threshold ξ0, which is smooth in the entire physical region, and approaches the ordinary, Q2-independent
parton distribution in the limit Q2 → ∞. Our prescription avoids any discontinuities in the parton distributions and
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Summary

Formulations not unique

best known Georgi/Politzer presciption suffers 
from (unphysical) threshold problem at x ~ 1

Target mass corrections important at low Q2

Straightforward extension to neutrino structure functions

New formulation avoids threshold problem

much weaker      dependence of momentsQ2

introduces    and     dependent PDFsξ ξ0


